Moving Toward Consistent Analysis in the HFC&IT Program: *H2A*

National Hydrogen Association Meeting April 26-30, 2004

Preview

- H2A history and purpose
- H2A structure (technical teams)
- Central and forecourt analyses
 - Financial approach
 - Cash flow model
 - Approach to Feedstock / fuels prices
- Delivery analyses
- Accomplishments
- Future plans

History & Where We Are Now

- First H2A meeting February 2003
- Primary goal: bring consistency & transparency to hydrogen analysis
- Current effort is not designed to pick winners
 - R&D portfolio analysis
 - Tool for providing R&D direction
- Current stage: production & delivery analysis consistent cost methodology & critical cost analyses
- Possible subsequent stages: transition analysis, end-point analysis
- Coordination with: Systems Integration, Program Tech Teams, efforts by H2A team member organizations

H2A Teams

- Central
 - $> 50,000 \text{ kg/day H}_2$
 - Johanna Ivy (NREL), Maggie Mann (NREL), Dan Mears (Technology Insights), Mike Rutkowski (Parsons Engineering)
- Forecourt
 - 100 and 1,500 kg/day H₂
 - Brian James (Directed Technologies, Inc.), Steve Lasher (TIAX), Matt Ringer (NREL)
- Delivery
 - Components and delivery scenarios
 - Marianne Mintz (ANL), Joan Ogden (UC Davis), Matt Ringer (NREL)
- Finance, feedstocks, and methodology
 - Marylynn Placet (PNNL)
- Environmental assessment
 - Michael Wang (ANL)

Approach

- Cash flow analysis tool
 - Estimates levelized price of hydrogen for desired internal rate of return
 - Take into account capital costs, construction time, taxes, depreciation, O&M, inflation, and projected feedstock prices
- Production costs estimated
 - Current, mid- (~2015), and long-term (~2030) technologies
 - Natural gas, coal, biomass, nuclear, electrolysis
 - Current delivery components
 - Data from published studies and industry designs
- Refined inputs and results based on peer review and input from key industrial collaborators (KIC)
- Identified key cost drivers using sensitivity analyses

KIC Companies

- AEP
- Air Products
- Areva
- BOC
- BP
- ChevronTexaco
- Conoco Phillips
- Eastman Chemical

- Entergy
- Exxon Mobil
- FERCO
- **GE**
- Praxair
- Shell
- Stuart Energy
- Thermochem

Questions We Asked of the KIC

- Do the relative costs make sense?
 - Within each technology?
 - Between technologies?
- Are our major assumptions in-line with your experience?
 - Process design
 - Capital costs
 - Performance
 - Feedstock costs
 - Improvements over time
- Do we target the right parameters in our sensitivity analysis?

H2A Cash Flow Analysis Tool

Solve Cash Flow for

VARIABLE PRODUCTION COSTS (at 100% capacity, startup year dollars)					
	Base Case:				
Feedstock Costs			D O	HOA Out de l'ors	
Type of electricity used			Base Case	H2A Guidelines	
Escalating electricity cost? (Enter yes or no)	Yes				
		decade increments)	2000	2000	
Enter electricity cost if NO is selected above (\$/kWh) Electricity consumption (kWh/kg H2)		umed Start-up Year	2005	2005, 2015, 2030	
		er-Tax Real IRR (%)	10%	10%	
Electricity cost in startup year (\$/kWh)		CRS, Straight Line)			
Electricity cost (\$/year, startup year dollars)	\$0	CRS, Straight Line)			
Elocatory cost (#) car, craitap y car acrasso,	40	ength (No. of Years)	20	20	
Type of natural gas used	None	llysis Period (years)	40	40	
Natural gas energy content, LHV, if standard H2A value is not desired (GJ/Nm3)	0.038	Plant Life (years)	40	40	
		ed Inflation Rate (%)	1.90%	1.90%	
		e Income Taxes (%)	6.0%	6%	
Escalating natural gas cost? (Enter yes or no)	Yes	I Income Taxes (%)	35.0%	35%	
		fective Tax Rate (%)	38.9%		
		acity (kg of H2/day)			
Enter natural gas cost if NO is selected above (\$/Nm3) Natural gas consumption (Nm³/kg of H2)		Capacity Factor (%)	90%	Varies according to case	
Output (kg H2/day			-		
	Plant Output (kg H2/year)				

Required Hydrogen Selling Price (\$(Year 2000)/kg of H2

Capital Cost Contribution (\$/kg of H2

\$1.886

\$0.779

Key Financial Parameters Forecourt and Central

- + Reference year (2000 \$)
- + Debt versus equity financing (100% equity)
- + After-tax internal rate of return (10% real)
- + Inflation rate (1.9%)
- Effective total tax rate (38.9%)
- Design capacity (varies)
- Capacity factor (90% for central (exc. wind); 70% for forecourt)
- Length of construction period (0.5 3 years for central; 0 for forecourt)
- Production ramp up schedule (varies according to case)
- Depreciation period and schedule (MACRS -- 20 yrs for central; 7 yrs for forecourt)
- Plant life and economic analysis period (40 yrs for central; 20 yrs for forecourt)
- Cost of land (\$5,000/acre for central; land is rented in forecourt)
- Burdened labor cost (\$50/hour central; \$15/hour forecourt)
- G&A rate as % of labor (20%)

Feedstock and Utility Prices

Issues:

- Future prices of any fuel / feedstock will be dependent on market demand for that fuel / feedstock
- Demand for hydrogen may affect future fuel / feedstock prices
- Delivered prices vary significantly by sector (i.e., commercial, industrial, utility)
- Historically, volatility and risk have varied among fuels / feedstocks
- Prices also vary among locations

Feedstock and Utility Prices, cont.

Solution:

- Develop reasonable price projections
 - Use "official" base case EIA projections through 2025 and extrapolate costs to 2070 using longerterm models (e.g., PNNL's Climate Assessment Model (M-CAM) and MARKAL)
 - Inflate current market prices and apply professional judgment
 - Use national averages to represent generic U.S. cases
- Conduct sensitivity runs to examine the effects of varying the feedstock/energy prices on the hydrogen price

Real Natural Gas Prices (1996 \$/mcf)

Fuel / Feedstock Price Projections

H2A Delivery Analysis

- Develop delivery component cost and performance database
- Develop delivery scenarios for major markets and demand levels
- Estimate the cost of H₂ delivery for scenarios

Assume 2005 delivery technologies

Delivery Scenarios

Market Type	Early Fleet Market (1%)	General Light Duty Vehicles: Market Penetration Small Medium Large			
	(170)	(10%)	(30%)	Large (70%)	
Metro	X	X	X	Х	
Rural			X		
Interstate			X		

Delivery costs are based on component combinations that meet the demands of the market

3 Delivery Modes: Compressed Gas Truck;

Liquid H2 Truck; Gas Pipeline

What We've Accomplished

- Developed central and forecourt standard reporting spreadsheets
 - Documents assumptions, inputs, and results
- Completed base cases with sensitivity analysis for current, mid-term, and long-term technologies
 - Natural gas reforming: central and forecourt
 - Coal
 - Biomass
 - Nuclear
 - Central wind / electrolysis
 - Distributed electroysis
 - LH₂ and cH₂ (Tube Trailer and Pipeline) Delivery
- Worked with key industry collaborators (KIC) to establish parameters, process designs, and technology assumptions
- Demonstrated ability to calculate levelized hydrogen price and document a consistent set of assumptions
 - Results are not meant to "select" one technology over another, but to provide R&D guidance

Immediate Next Steps

- Incorporate energy efficiency and environmental measures (Summer '04)
- Website with spreadsheet tool, results, and detailed documentation (Summer '04)
- Complete delivery component and scenario cost analysis (Fall '04)
- Complete remaining cases (Fall '04)
- Peer-reviewed paper (Fall '04)
- Plan for next phase of H2A

Many Many Thanks

 Mark Paster, Pete Devlin, Roxanne Danz – DOE

Key Industrial Collaborators

H2A team and their organizations